pubs.acs.org/joc

Synthesis of the Landomycinone Skeleton

Xavier Bugaut, Xavier Guinchard, and Emmanuel Roulland*

CNRS, Institut de Chimie des Substances Naturelles (ICSN), UPR 2301, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France

emmanuel.roulland@icsn.cnrs-gif.fr

Received September 16, 2010

The synthesis of the highly functionalized tetracyclic skeleton of landomycinone (2), the aglycon of landomycins, was performed using two pivotal steps relying on metal-catalyzed reactions. They are (1) a [2 + 2 + 2] cycloaddition of alkynes promoted by Wilkinson's catalyst to build rings B and C concomitantly and (2) a ring-closing metathesis followed by aromatization to build ring D.

1. Introduction

Landomycin A (1) (Figure 1) was isolated in 1990 and identified as the main bioactive compound extracted from a broth of the actinobacteria *Streptomyces cyanogenus* (strain S136, DSM 5087).¹ The aglycon core of this glycosidic antibiotic is an angular tetracyclic decaketide named landomycinone (2), which is bonded to the hexasaccharidic chain at a phenolic position. Three related compounds featuring altered oligosaccharidic side chains, named landomycins B–D, were

(4) (a) Westrich, L.; Domann, S.; Faust, B.; Bedford, D.; Hopwood, D.,
A.; Bechthold, A. *FEMS Microbiol. Lett.* 1999, *170*, 381–387. (b) Rebets, Y.;
Ostash, B.; Luzhetskyy, A.; Hoffmeister, D.; Braňa, A.; Mendez, C.; Salas, J. A.; Bechthold, A., Fedorenko, V. *FEMS Microbiol. Lett.* 2003, 222, 149–153. (c) Ostash, B.; Rix, U.; Rix, L. L. R.; Liu, T.; Lombo, F.; Luzhetskyy, A.;
Gromyko, O.; Wang, C.; Braňa, A. F.; Méndez, C.; Salas, J. A.; Fedorenko, V.; Rohr, J. *Chem. Biol.* 2004, *11*, 547–555. (d) Zhu, L.; Ostash, B.; Rix, U.;
Nur-e-Alam, M.; Mayers, A.; Luzhetskyy, A.; Mendez, C.; Salas, J. A.; Bechthold, A.; Fedorenko, V.; Rohr, J. *J. Org. Chem.* 2005, *70*, 631–638. (e) Luzhetskyy, A.; Zhu, L.; Gibson, M.; Fedoryshyn, M.; Dürr, C.; Hoffmeister, D.; Ostash, B.; Mattingly, C.; Adams, V.; Fedorenko, V.; Rohr, J.; Bechthold, A. *ChemBioChem* 2005, *6*, 1406–1410. (g) Zhu, L.; Luzhetskyy, A.; Luzhetskay, A.; Luzhetska, M.; Mattingly, C.; Adams, V.; Bechthold, A.; Rohr, J. *ChemBioChem* 2007, *8*, 83–88. (h) Krauth, C.; Fedoryshyn, M.; Schleberger, C.; Luzhetskyy, A.; Bechthold, A.; Bechthold, A. *Chem. Biol.* 2007, *8*, 83–88. (h) Krauth, C.; Fedoryshyn, M.; Schleberger, C.; Luzhetskyy, A.; Bechthold, A.; Bechthold, A. *Chem. Biol.* 2007, *8*, 83–88. (h) Krauth, C.; Fedoryshyn, M.; Schleberger, C.; Luzhetskyy, A.; Bechthold, A. *Chem. Biol.* 2007, *8*, 83–88. (h) Krauth, Store 2009, *16*, 28–35.

8190 J. Org. Chem. 2010, 75, 8190-8198

isolated in lower amounts from the same fermentation experiments. Landomycins D and E were isolated from another actinobacteria named *Streptomyces globisporum* (strain 1912).²

All landomycins contain the same aglycon, but the length of their oligosaccharidic side chain (two to six sugars) is variable. They belong to the large family of angucycline antibiotics, this name reflecting the angular geometry of their aglycon skeleton.^{2,3} A large number of genetic engineering studies were conducted in order to understand the biosynthesis of landomycins and resulted in the production of many new related compounds possessing structural modifications on both the aglycon and/or the oligosaccharide.⁴

All landomycins, as well as landomycinone (2), are endowed with diverse biological activities, but their marked

Published on Web 10/28/2010

DOI: 10.1021/jo1018377 © 2010 American Chemical Society

^{(1) (}a) Henkel, T.; Rohr, J.; Beale, J. M.; Schwenen, L. J. Antibiot. **1990**, 43, 492–503. (b) For the revision of the position of the oligosaccharidic chain, see: Weber, S.; Zolke, C.; Rohr, J.; Beale, J. M. J. Org. Chem. **1994**, 59, 4211–4214.

⁽²⁾ Krohn, K.; Rohr, J. Top. Curr. Chem. 1997, 188, 127–195. and references cited therein.

⁽³⁾ Rohr, J.; Thiericke, R. Nat. Prod. Rep. 1992, 9, 103-137.

antitumor properties are of particular interest.⁵ Landomycin A (1) is the most cytostatic member of the family and exhibits activity on cells comparable with clinically used anticancer agents such as bleomycin, cisplatin, doxorubicin, or paclitaxel.⁵ One must notice that even multidrug-resistant cell lines remain sensitive to these compounds.⁷ Studies of its mode of action demonstrated that landomycin A (1) inhibits DNA synthesis and cell cycle progression at the G_1/S phase.⁶ Landomycin E has the same effect on DNA synthesis but without any modification of cell cycle⁷ and seems to induce cell death via depolarization of the membrane of mitochondria.

While the syntheses of some of the oligosaccharidic chains or of the landomycinone (2) have been reported,⁸ to date there is no total synthesis of any member of this family. The first study of the aglycon synthesis consisted of the biomimetic preparation of a putative biosynthetic intermediate via a basetriggered double cyclization to form rings A and B.⁹ In 2004, Roush et al. reported the only synthesis of landomycinone (2).¹⁰ The key step of this approach was a moderately efficient Dötz benzannulation requiring a stoichiometric amount of organochromium reagent.

Herein, we wish to discuss our results on route to landomycinone (2) that led to the assembly of the skeleton of the target using transition-metal-catalyzed reactions as key steps.

2. Results and Discussion

2.1. Retrosynthetic Plan. Due to its unique and densely hydroxylated polycyclic structure, landomycinone (2) is a difficult target. The most obvious challenge of its synthesis is the formation of the angular ring B which bears an asymmetric alcohol function particularly prone to elimination. We intended to design a strategy based on metal-catalyzed reactions (Scheme 1). The pivotal step, a [2 + 2 + 2] cycloaddition of alkynes, would allow the simultaneous construction of both rings B and C.^{11,12} We planned other key

(a) Guo, Y.; Sulikowski, G. A. J. Am. Chem. Soc. **1998**, 120, 1392–1397. (b) Roush, W. R.; Bennett, C. E. J. Am. Chem. Soc. **2000**, 122, 6124–6125. (c) Yu, B.; Wang, P. Org. Lett. **2002**, 4, 1919–1922. For a total synthesis of the trisaccharide of landomycin E, see: (d) Zhou, M.; O'Doherty, G. A. Org. Lett. **2008**, 10, 2283–2286. For the combinatorial synthesis of a library of related hexasaccharides, see: (e) Tanaka, H.; Yamaguchi, S.; Yoshizawa, A.; Takagi, M.; Shin-ya, K.; Takahashi, T. Chem. Asian J. **2010**, 5, 1407– 1424.

(9) Krohn, K.; Frese, P.; Freund, C. *Tetrahedron* 2000, 56, 1193–1196.
(10) (a) Roush, W. R.; Neitz, R. J. J. Org. Chem. 2004, 69, 4906–4912.
(b) Discrepancies between analytical data of "natural" and "synthetic" landomycinone induced Roush et al. to propose a revised structure for the aglycon. Nevertheless, further purification of the biosynthetic product solved this problem and confirmed structure 2. See ref 4d.

(11) For reviews on [2+2+2] cycloadditions of alkynes, see: (a) Kotha,
S.; Brahmachary, E.; Lahiri, K. *Eur. J. Org. Chem.* 2005, 4741–4767.
(b) Chopade, P. R.; Louie, J. *Adv. Synth. Catal.* 2006, 348, 2307–2327.
(c) Agenet, N.; Buisine, O.; Slowinski, F.; Gandon, V.; Aubert, C.; Malacria,
M. *Org. React.* 2007, 68, 1–302. (d) Galan, B. R.; Rovis, T. *Angew. Chem., Int. Ed.* 2009, 48, 2830–2834.

(12) For the use of Co-catalyzed [2+2+2] cycloadditions for the synthesis of angucyclines with an aromatic angular ring, see: (a) Kalogerakis, A.; Groth, U. Org. Lett. 2003, 5, 843–844. (b) Kalogerakis, A.; Groth, U. Synlett 2003, 1886–1888. (c) Kesenheimer, C.; Groth, U. Org. Lett. 2006, 8, 2507–2510. (d) Kesenheimer, C.; Kalogerakis, A.; Meissner, A.; Groth, U. Chem.—Eur. J. 2010, 16, 8805–8821.

transformations comprising a ring-closing metathesis (RCM) to create aromatic ring D^{13} and a challenging Pd(0)-catalyzed cross-coupling at a sterically hindered o,o'-disubstituted position of ring A.

2.2. Preparation of the Diynes. Our synthesis started from allyl ether **4** obtained from the commercially available 2-methoxy-4-methylphenol **3** (Scheme 2).¹⁴ Claisen rearrangement of allyl ether **4** was carried out in a microwave oven, using *N*methylpyrrolidinone (NMP) as the solvent to improve microwave absorption.¹⁵ The resulting phenol **5** was then converted into the corresponding triflate **6** in quantitative yield.

In the next stage, we focused our attention on the Pd(0)-catalyzed cross-coupling of **6** to introduce a (trimethylsilyl)ethynyl

⁽⁵⁾ Ostash, B.; Korynevska, A.; Stoika, R.; Fedorenko, V. *Mini-Rev. Med. Chem.* **2009**, *9*, 1040–1051.

⁽⁶⁾ Crow, R. T.; Rosenbaum, B.; Smith, R., III; Guo, Y.; Ramos, K. S.;
Sulikowski, G. A. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 1663–1666.
(7) Korynevska, A.; Heffeter, P.; Matselyukh, B.; Elbling, L.; Micksche,

 ⁽i) Kolynevska, A., Heitelet, F., Matserjukh, B., Eloling, L., Mickscher, M., Stoika, R.; Berger, W. *Biochem. Pharmacol.* 2007, 74, 1713–1726.
 (8) For total syntheses of the hexasaccharide of landomycin A, see:

⁽¹³⁾ For reviews on the synthesis of aromatic rings by ring-closing metathesis, see: (a) Donohoe, T. J.; Orr, A. J.; Bingham, M. Angew. Chem., Int. Ed. 2006, 45, 2664–2670. (b) van Otterlo, W. A. L.; de Koning, C. B. Chem. Rev. 2009, 109, 3743–3782.

⁽¹⁴⁾ Srikrishna, A.; Satyanarayana, G. *Tetrahedron* **2006**, *62*, 2892–2900. (15) (a) This reaction has been effected by prolonged heating in a sealed tube (see ref 14) but proved inconvenient to reproduce. (b) For a previous report on the benefitial effect of microwaves and a polar solvent in Claisen rearrangements, see: Davis, C. J.; Hurst, T. E.; Jacob, A. M.; Moody, C. J. *J. Org. Chem.* **2005**, *70*, 4414-4422.

SCHEME 3. Preparation of Several Diynes for the [2 + 2 + 2] Cycloaddition

moiety. Unfortunately, classic Sonogashira conditions¹⁶ did not lead to the desired product **7**, probably because of steric hindrance of the triflate function of **6**. These fruitless results prompted us to turn our attention toward a Suzuki–Miyaura cross-coupling involving potassium (trimethylsilyl)ethynyltrifluoroborate as the nucleophilic coupling partner.¹⁷ To perform the cross-coupling efficiently and without loss of the trimethylsilyl group, an adaptation of the conditions described by Molander et al. was required.¹⁷ Thus, the use of Buchwald's ligand RuPhos¹⁸ along with a milder base (K₃PO₄ instead of Cs₂CO₃) led to the isolation of alkyne **7** in high yield. A selective osmium-catalyzed oxidation of the allyl group afforded then diol **8**, which served as precursor for the preparation of several diynes.

For this purpose, an oxidative cleavage was performed affording the fragile aldehyde **9** (Scheme 3, route A). Condensation with lithium (trimethylsilyl)acetylide **10a** furnished a propargylic alcohol, which was directly protected as the corresponding silyl ether **11a**. Afterward, diyne **12a** was easily obtained by removal of the acetylenic TMS protective groups under basic conditions. Alternatively, Grignard reagents **10b** and **10c** could be used in a similar sequence, enabling the synthesis of diynes **11b** and **11c** in good yields (Scheme 3, Route B). Subsequent treatment of compound **11c** with NaOH yielding alcohol **12c** by the selective cleavage of the *tert*-butyldiphenylsilyl (TBDPS) protective group orthogonally to the TBS.¹⁹ Finally, a similar strategy yielded diyne **11d** from diol **13** (Scheme 3, route C).

2.3. Intermolecular [2 + 2 + 2] Cycloaddition. Many intermolecular [2 + 2 + 2] cycloadditions of substituted diynes

SCHEME 4. Attempts of Intermolecular [2 + 2 + 2] Cycloaddition

11a–**d** or **12c** were attempted using reaction partners such as acetylene (**14a**), but-2-yne-1,4-diol (**14b**) or dimethyl acetylenedicarboxylate (**14c**) (Scheme 4, eq 1). Several classic catalytic systems¹¹ (RhCl(PPh₃)₃,²⁰ Rh(cod)₂BF₄–H₈-BINAP,²¹ Cp*Ru(cod)Cl,²² [Ir(cod)Cl]₂-ddpe,²³ Co₂(CO)₈²⁴) were screened but did not afford tricyclic compounds in synthetically useful yields (< 20%). The use of sterically hindered substituted diynes may account for these disappointing results. This hypothesis was confirmed by the successful Wilkinson's complex-catalyzed cycloaddition of the far less hindered bis-terminal diyne **12a** with but-2-yn-1,4-diol **14b**,

⁽¹⁶⁾ Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874-922.

^{(17) (}a) Molander, G. A.; Katona, B. W.; Machrouhi, F. J. Org. Chem. 2002, 67, 8416–8423. For recent reviews on the use of these stable and highly convenient organoboron derivatives, see: (b) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275–286. (c) Darses, S.; Genêt, J.-P. Chem. Rev. 2008, 108, 288–325. (d) Molander, G. A.; Canturk, B. Angew. Chem., Int. Ed. 2009, 48, 9240–9261.

^{(18) (}a) Milne, J. E.; Buchwald, S. L. J. Am. Chem. Soc. **2004**, *126*, 13028–13032. (b) Molander, G. A.; Brown, A. R. J. Org. Chem. **2006**, *71*, 9681–9686.

⁽¹⁹⁾ For other examples of such selective deprotections of TBDPS-ethers in the presence of TBS-ethers in natural product synthesis, see: (a) Kabat, M. M.; Lange, M.; Wovkulich, P. M.; Uskokovic, M. R. *Tetrahedron Lett.* **1992**, *33*, 7701–7704. (b) Hatakeyama, S.; Irie, H.; Shintani, T.; Noguchi, Y.; Yamada, H.; Nishizawa, M. *Tetrahedron* **1994**, *50*, 13369–13376. (c) Cook, C.; Guinchard, X.; Liron, F.; Roulland, E. Org. Lett. **2010**, *12*, 744–747.

⁽²⁰⁾ Grigg, R.; Scott, R.; Stevenson, P. J. Chem. Soc., Perkin Trans. 1 1988, 1357–1364.

⁽²¹⁾ Yamamoto, Y.; Arakawa, T.; Ogawa, R.; Itoh, K. J. Am. Chem. Soc. **2003**, *125*, 12143–12160.

⁽²²⁾ Tanaka, K.; Toyoda, K.; Wada, A.; Shirasaka, K.; Hirano, M. *Chem.*—*Eur. J.* **2005**, *11*, 1145–1156.

⁽²³⁾ Takeuchi, R.; Tanaka, S.; Nakaya, Y. Tetrahedron Lett. 2001, 42, 2991–2994.

⁽²⁴⁾ Gandon, V.; Leca, D.; Aechtner, T.; Vollhardt, K. P. C.; Malacria, M.; Aubert, C. Org. Lett. 2004, 6, 3405–3407.

SCHEME 5. Construction of the Tether and Intramolecular [2 + 2 + 2] Cycloaddition

affording tricyclic product **15** in a 78% yield (Scheme 4, eq 2). Unfortunately, the C ring of product **15** does not bear the functionalities at positions C7 or C12 that would serve as precursor for the naphthoquinone motif of $2^{.25}$

2.4. Intramolecular [2 + 2 + 2] Cycloaddition. The results presented above confirm that the [2 + 2 + 2] cycloaddition of substituted alkynes is difficult. Unfortunately, our strategy definitely required the cycloaddition of such substituted alkynes which is the only way to introduce oxidizable functions as precursors of the quinonic ring C. A popular solution of the problem is to render the [2 + 2 + 2] cycloaddition all-intermolecular by means of a cleavable tether. In such an approach, the negative effect of steric hindrance would be diminished by a more favorable entropy of the system. Moreover, regioselectivity would be ensured. Since the seminal examples by Nishiyama²⁶ and Stork,²⁷ the use of tethers,²⁸ in particular silicon-containing ones,²⁹ has become a classical synthetic method. In the case of [2+2+2] cyclodditions, a comparable strategy has already been applied with silicon-³⁰ and boron-containing³¹ linkers. For our part, we chose to explore the interesting potential offered by the ester tether.³² Esters, indeed, possess all required properties of an efficient tether: (i) many efficient methods are available for their installation, (ii) [2+2+2] cycloadditions of 1,6-diynes tied together by an ester bond are generally very efficient,³³ and (iii) the resulting lactone is a function with a rich reactivity.

To build our ester tether, carboxylic acid **17** was prepared in four steps from acrolein via known terminal alkyne **16**

(25) Attempted metalation on ring C of product 15 was unsuccesful.
(26) Nishiyama, H.; Kitajima, T.; Matsumoto, M.; Itoh, K. J. Org. Chem.

(26) Nishiyama, H.; Kitajima, T.; Matsumoto, M.; Itoh, K. J. Org. Cher. **1984**, *49*, 2298–2300.

(27) Stork, G.; Kahn, M. J. Am. Chem. Soc. 1985, 107, 500-501.

(28) Gauthier, D. R.; Zandi, K. S.; Shea, K. J. *Tetrahedron* **1998**, *54*, 2289–2338.

(29) (a) Bols, M.; Skrydstrup, T. Chem. Rev. 1995, 95, 1253–1277.
(b) Fensterbank, L.; Malacria, M.; Sieburth, S. M. N. Synthesis 1997
813–854.

(30) (a) Chouraqui, G.; Petit, M.; Aubert, C.; Malacria, M. Org. Lett. 2004, 6, 1519–1521. (b) Chouraqui, G.; Petit, M.; Phansavath, P.; Aubert, C.; Malacria, M. Eur. J. Org. Chem. 2006, 1413–1421.

(31) Yamamoto, Y.; Ishii, J.-i.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2004, 126, 3712–3713.

(32) For the use and valorization of a temporary ester link in a transannular Diels–Alder reaction, see: Suzuki, T.; Usui, K.; Miyake, Y.; Namikoshi, M.; Nakada, M. *Org. Lett.* **2004**, *6*, 553–556.

(33) For a very efficient example in total synthesis, see: Witulski, B.; Zimmermann, A.; Gowans, N. D. Chem. Commun. 2002, 2984–2985. (Scheme 5).³⁴ The Mitsunobu reaction turned out to be the best method for the coupling of alcohol **12c** with carboxylic acid **17**.³⁵ Nonetheless, a thorough optimization of the conditions was necessary. The first trials were indeed very promising (isolated yield often reaching 80%) but poorly reproducible (yield sometimes dropped to 10–20%). Finally, we found that the order of addition of the various reagents was instrumental. Thus, the reproducibility issue was solved by premixing an excess of di-*tert*-butyl azodicarboxylate (DTBAD)³⁶ with PPh₃ in THF at 0 °C,³⁷ followed by the addition of 2 equiv of carboxylic acid with respect to the phosphine,³⁸ and then the addition of the alcohol. This procedure furnished ester **18** in a reproducible 97% yield.

With triyne **18** in hand, we searched for efficient [2 + 2 + 2] cycloaddition conditions. Delightfully, the reaction of **18** with the Wilkinson's catalyst (5 mol %, rt, 48 h) led to a full conversion furnishing tetracyclic product **19** in an 82% isolated yield, demonstrating the dramatic effect of the tether.³⁹ In refluxing CH₂Cl₂, the reaction time was shortened in half and the yield improved to 93%. One notices that the double bond present in the substrate **18** was inert to these conditions. Moreover, the latter conditions are sufficiently mild to avoid the troublesome aromatization of ring B by elimination of the oxygen at C6.⁴⁰

2.5. Formation of Ring D by Ring-Closing Metathesis. Ring D was envisaged to arise by RCM followed by aromatization (Table 1). For this purpose, a second alkene function had to be introduced. Thus, selective addition⁴¹ of vinyllithium to the lactone function of **19** led to the acid sensitive dienic hemiketal **20** as an inseparable mixture of four diastereoisomers.⁴² Formation of aromatic compounds by RCM has been a very active research field over the past few years,¹³ and it has been shown that newly formed rings bearing an alcohol or a ketone function could be readily aromatized by either elimination of water⁴³ or by tautomerization.⁴⁴ However, the corresponding transformation of a

(36) Pelletier, J. C.; Kincaid, S. Tetrahedron Lett. 2000, 41, 797-800.

(37) For a detailed discussion on the mechanism of Mitsunobu reaction and on the impact of the order of introduction of the reactants, see: Hughes, D. L. Org. React. **1992**, 42, 335–656.

(38) It was shown that using a second equivalent of carboxylic acid could prevent nonproductive nucleophilic attack of the carboxylate: Hughes, D. L.; Reamer, R. A.; Bergan, J. J.; Grabowski, E. J. J. J. Am. Chem. Soc. 1988, 110, 6487–6491.

(39) Tethers built from diynoic acids and monalkyols were also prepared. They gave significantly worse results, [2 + 2 + 2] cycloaddition products being obtained in yield lower than 25%, along with many degradation products.

(40) For an example of a [2 + 2 + 2] cycloaddition accompanied by aromatization through elimination of TBDMSOH, see ref 12.

(41) Cavicchioli, S.; Savoia, D.; Trombini, C.; Umani-Ronchi, A. J. Org. Chem. 1984, 49, 1246–1251, and references therein

(42) (a) Compound **20** and all its derivatives are extremely acid-sensitive and tend to degrade via aromatization of ring B. More details concerning their handling are described in the Supporting Information. (b) These four diastereoisomers are a priori valuable, since the RCM-aromatization sequence should destroy two asymmetric centers.

(43) Selected examples: (a) Huang, K.-S.; Wang, E.-C. *Tetrahedron Lett.* 2001, 42, 6155–6157. (b) Yoshida, K.; Kawagoe, F.; Iwadate, N.; Takahashi, H.;
 Imamoto, T. *Chem. Asian J.* 2006, 1, 611–613. (c) Takahashi, H.; Yoshida, K.;
 Yanagisawa, A. J. Org. Chem. 2009, 74, 3632–3640.

(44) (a) For a pioneering example, see: van Otterlo, W. A. L.; Ngidi, E. L.; Coyanis, E. M.; de Koning, C. B. *Tetrahedron Lett.* 2003, 44, 311–313.
(b) For a leading reference, see: Yoshida, K.; Imamoto, T. J. Am. Chem. Soc. 2005, 127, 10470–10471.

^{(34) (}a) Ratnayake, A. S.; Hemscheidt, T. *Org. Lett.* **2002**, *4*, 4667–4669. (b) Young, D. G. J.; Burlison, J. A.; Peters, U. *J. Org. Chem.* **2003**, *68*, 3494–3497.

^{(35) (}a) For seminal work, see: Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380–2382. (b) For a recent review, see: Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.; Kumar, K. V. P. P. Chem. Rev. 2009, 109, 2551–2651.

TABLE 1. Formation of Ring D by RCM

entry	additive	results ^a
1	no additive	22(33%) + 23(28%)
2	2,6-dichlorobenzoquinone $(10 \text{ mol } \%)^b$	only 23 (77%)
3	<i>B</i> -chlorocatecholborane $(10 \text{ mol } \%)^b$	only 23 ^c
4	$Ti(Oi-Pr)_4 (1.5 \text{ equiv})^b$	no reaction
5	$H_2O(1 \text{ equiv})^b$	22(19%) + 23(27%)
6	NaHCO ₃ (2 equiv)	degradation
7	Proton Sponge (20 mol $\%$) ^d	degradation
8	2,6-lutidine (20 mol %)	22(54%) + 23(13%)
9	2,6-lutidine $(1.1 \text{ equiv})^e$	22(43%) + 23(25%)
^{<i>a</i>} Isolated yields starting from lactone 19 ^{<i>b</i>} 5 mol % of catalyst 21 was		

used. ^cProduct **23** was identified in the ¹H NMR of the reaction crude but not isolated. d 1,8-Bis(dimethylamino)naphthalene. e 2 h.

vinyl hemiketal, such as **20**, seems unprecedented. Reaction of diene **20** with Grubbs' second-generation catalyst **21**, followed by in situ protection of the unstable phenol as a methyl ether, afforded a mixture of cyclized compounds **22** and **23** in an almost 1:1 ratio (entry 1).

It is very likely that both **22** and **23** derive from common cyclized intermediate **24**, the aromatization occurring either by dehydration or by hemiketal opening followed by tautomerization (Table 1, scheme). The use of the Hoveyda–Grubbs second-generation catalyst did not improve these results. We then turned our attention toward the use of additives, which are common in RCM reactions. The addition of 2,6-dichloroben-zoquinone (entry 2)⁴⁵ or *B*-chlorocatecholborane (entry 3)⁴⁶ led to unwanted **23** exclusively, in up to 77% yield,⁴⁷ whereas the presence of Ti(O-*i*-Pr)₄ (entry 4) totally inhibited the RCM.⁴⁸ We thought that the addition of 1 equiv of water would disfavor the dehydration, but it had a negative impact on the outcome of the reaction (entry 5). We then realized that the desired phenol

might acidify the reaction medium which enhances the formation of **23** by acid-catalyzed dehydration of intermediate **24**. Thus, buffering the reaction medium should diminish the formation of **23** in favor of **22**. Even though Grubbs' catalyst **21** is known to be sensitive to basic conditions,⁴⁹ we undertook a screening of weak non-nucleophilic bases. The addition of NaHCO₃ (entry 6) or Proton Sponge [1,8-bis(dimethylamino)naphthalene] (entry 7) led to degradation products. We eventually found that 2,6-lutidine (20 mol %) (entry 8)⁵⁰ was mild enough to preserve the catalytic activity, while buffering the reaction medium efficiently, as we reproducibly isolated **22** in 54% yield and **23** in only 13%. Adding more 2,6-lutidine (entry 9) had no further positive impact. This last cyclization step allowed us to obtain the tetracyclic framework of landomycinone **2** with a remarkably high global yield of 19% over 15 steps.

Despite the success of the metathesis step described above, we chose to explore the possibility of forcing the opening of the five-membered lactol function of compound 20 prior to RCM (Scheme 6), in order to avoid the formation of compound 23. We first tried to open the lactol ring by reduction, but the Luche conditions (NaBH₄, CeCl₃·7H₂O, MeOH, $0 \,^{\circ}\text{C})^{51}$ or the use of LiAlH₄ (in THF or TBME, from room temperature to reflux) did not afford diol 25, and extensive degradation of the starting material was the sole result. Degradation was also observed when we tried to form dicarbonyl 26 under oxidative conditions using IBX⁵² or Dess-Martin periodinane⁵³ or under Oppenauer conditions [Al(O-*i*-Pr)₃, excess acetone, toluene, reflux].⁵⁴ Surprisingly, further attempts using MnO_2 or PCC⁵⁵ resulted only in the formation of lactone 19 by formal loss of the vinyl function. It has already been reported several times that the exposure of a lactol to silylating conditions might allow its opening by silylation of the masked alcohol.⁵⁶ Pleasingly, in the presence of TESCI and imidazole, lactol **20** rapidly and efficiently yielded α . β -unsaturated ketone 27. This new diene 27 was, however, reluctant to RCM, even under forced conditions (Grubbs II or Hoveyda-Grubbs II catalysts, toluene, 80 °C, 12 h), as only a trace amount of naphthol 28 could be detected in the reaction mixture, along with some starting material and degradation products. Even the addition of Ti(O-i-Pr)4, known to prevent deleterious catalyst complexation to carbonyl groups, was unsuccessful.48

2.6. Study of the Functionalization of Ring C. The next challenge was to cleave the benzylic alcohol function on ring C of compound **22**, which is a remnant of the tether, while installing an oxidizable function as a quinone precursor. We first envisioned removing this fragment using oxidative conditions that would provide an oxygen atom at position C7 (Scheme 7). For that purpose, the benzylic alcohol **22** was oxidized into the corresponding aldehyde **29** using a large

(51) Eucle, J.-E. J. Am. Chem. Soc. **1978**, 100, 2220–2221. (52) Wirth, T. Angew. Chem., Int. Ed. **2001**, 40, 2812–2814.

- (54) de Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J. Synthesis **1994**, 1007–1017.
- (55) Corey, E. J.; Suggs, J. W. *Tetrahedron Lett.* **1975**, *16*, 2647–2650.

(56) For selected examples in natural product synthesis, see: (a) Magnus, P.; Giles, M.; Bonnert, R.; Kim, C. S.; McQuire, L.; Merritt, A.; Vicker, N.

J. Am. Chem. Soc. **1992**, *114*, 4403–4405. (b) White, J. D.; Wang, G.; Quaranta, L. Org. Lett. **2003**, *5*, 4983–4986.

⁽⁴⁵⁾ This additive is usually employed to avoid double-bond migration in alkene metathesis: Hong, S. H.; Sanders, D. P.; Lee, C. W.; Grubbs, R. H. *J. Am. Chem. Soc.* **2005**, *127*, 17160–17161.

⁽⁴⁶⁾ Vedrenne, E.; Dupont, H.; Oualef, S.; Elkaïm, L.; Grimaud, L. Synlett 2005, 670-672.

⁽⁴⁷⁾ This efficient preparation of compound 23 prompted us to study its a posteriori opening, in order to convert it into a valuable intermediate. Nonetheless, its treatment with an oxidizing reagent, or with a nucleophile in the presence of a Lewis acid, were unsuccessful.

⁽⁴⁸⁾ Fürstner, A.; Langemann, K. J. Am. Chem. Soc. 1997, 119, 9130-9136.

⁽⁴⁹⁾ Dinger, M. B.; Mol, J. C. *Eur. J. Inorg. Chem.* 2003, 2827–2833.
(50) A single example of the use of 2,6-di(*tert*-buty))pyridine as additive in a constraint back denotes the second state of the second

an enyne metathesis had already been reported: Yoshida, K.; Shishikura, Y.;
 Takahashi, H.; Imamoto, T. *Org. Lett.* 2008, *10*, 2777–2780.
 (51) Luche, J.-L. *J. Am. Chem. Soc.* 1978, *100*, 2226–2227.

 ⁽⁵²⁾ With, T. Ingew. Chem., Int. La. 2001, 40, 2012 (2014).
 (53) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155–4156.

SCHEME 6. Opening of the Five-Membered Ring of Lactol 20 before Alkene Metathesis

excess of commercially available activated MnO_2 .⁵⁷ Trials employing Dess–Martin,⁵³ Corey–Schmidt,⁵⁸ and Swern⁵⁹ conditions only afforded complex mixtures. Various Dakin oxidation conditions to transform aldehyde **29** into phenol **30** were tried (H₂O₂–K₂CO₃, H₂O₂–PhSeSePh,⁶⁰ *m*-CPBA,⁶¹ AcOOH, Oxone⁶²), but none of them afforded the expected product.

Searching for an alternative cleavage of this C–C bond, we turned our attention toward Curtius rearrangement.⁶³ To test this option, aldehyde **29** was oxidized using Lindgren– Kraus–Pinnick reaction conditions,⁶⁴ giving the corresponding carboxylic acid **31** in 62% yield. We then used (PhO)₂PON₃ to transform **31** into the acyl azide **32**.⁶⁵ However, in the presence of triethylamine, either in DMF or in dichloromethane, this reagent afforded complex

(58) Corey, E. J.; Schmidt, G. Tetrahedron Lett. 1979, 20, 399-402.

(59) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651–1660.

- (60) Syper, L. Synthesis 1989, 167-172.
- (61) Franck, R. W.; Gupta, R. B. J. Org. Chem. 1985, 50, 4632-4635.

(64) (a) Lindgren, B. O.; Nilson, T. Acta Chem. Scand. 1973, 27, 888–890.
 (b) Kraus, G. A.; Taschner, M. J. J. Org. Chem. 1980, 45, 1175–1176. (c) Bal,

mixtures that did not contain acyl azide 32 but led in low yield to the pentacyclic γ -lactone 33, along with isocyanate 34, the desired Curtius rearrangement product. The instability of the intermediate 32 is unusual; its room-temperature rearrangement is likely initiated by the release of steric constraints through expulsion of a molecule of N₂. The unexpected formation of γ -lactone 33 might be due to trapping of the neighboring acylium cation resulting from the loss of N_3^- from acyl azide **32** by the OTBS group at C6 or from the direct (PhO)₂PON₃ activation of the carboxylic acid function of **31**. Despite the low observed yields for this last step, we have validated our strategy, as we successfully removed the tether used for the rhodium-catalyzed [2+2+2]cycloaddition while installing a nitrogen atom as a precursor of the quinonic ring C. By modifying the nature of the protective group at C6, we should obtain better yields for this step. We envision finishing the total synthesis of landomycinone (2) by performing the hydrolysis of isocyanate 34 affording then aniline 35 that would deliver the targeted quinone 36 by oxidation by Fremy's salt (Scheme 7).⁶⁶ At the end game, the methyl protecting groups on the phenol functions would be removed employing Lewis acids such as BCl_3^{67} or MgI_2^{68} in the mild conditions usually used for

⁽⁵⁷⁾ Purchased from Sigma-Aldrich and used shortly after opening the container. "Older" MnO₂ proved not reactive enough, whereas highly activated MnO₂ produced from KMnO₄ and MnCl₂·4H₂O (Fatiadi, A. J. *Synthesis* **1978**, 65–104) yielded a complex mixture

⁽⁶²⁾ Travis, B. R.; Šivakumar, M.; Hollist, G. O.; Borhan, B. Org. Lett. **2003**, *5*, 1031–1034.

⁽⁶³⁾ Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 297-368.

B. S.; Childers, W. E., Jr.; Pinnick, H. W. *Tetrahedron* 1981, *37*, 2091–2096.
 (65) Shioiri, T.; Ninomiya, K.; Yamada, S. J. Am. Chem. Soc. 1972, 94, 6203–6205.

⁽⁶⁶⁾ Zimmer, H.; Lankin, D. C.; Horgan, S. W. Chem. Rev. 1971, 71, 229–246.

⁽⁶⁷⁾ Nagaoka, H.; Schmid, G.; Iio, H.; Kishi, Y. Tetrahedron Lett. 1981, 22, 899–902.

⁽⁶⁸⁾ Yamaguchi, S.; Nedachi, M.; Yokoyama, H.; Hirai, Y. Tetrahedron Lett. 1999, 40, 7363–7365.

OMe neighboring carbonyl functions, and the TBS would be removed under acidic conditions as already described by Roush.^{10a}

3. Conclusion

The densely functionalized and highly unsaturated tetracyclic skeleton of landomycinone (2) has been efficiently synthesized using three metal-catalyzed pivotal steps. First, finely tuned conditions were designed to perform an efficient Suzuki-Miyaura cross-coupling between potassium (trimethylsilyl)ethynyltrifluoroborate and the sterically hindered aromatic triflate 6. Second, a remarkably efficient Rh(I)catalyzed [2+2+2] cycloaddition allowed the concomitant formation of rings B and C, delivering lactone 19. This key intermediate has been synthesized in twelve steps and in a 50% overall yield. Third, a RCM under specially designed buffered conditions has secured the formation of aromatic ring D. Finally we have validated our strategy, as the tether used for the Rh(I)-catalyzed [2 + 2 + 2] cycloaddition was replaced by an oxidizable function that prefigures quinonic ring C. Further improvements and developments based on this promising strategy are currently under investigation and will be reported in due course.

4. Experimental Section

2-Allyl-6-methoxy-4-methylphenol (5). A solution of allyl ether 4 (5.94 g, 33.3 mmol, 1 equiv) in NMP (12 mL) was irradiated in a microwave oven (T = 220 °C, t = 15 min). The reaction mixture was then diluted with water (75 mL) and extracted with Et₂O (3×75 mL). The combined organic phases were washed with water (75 mL) and brine (75 mL), dried over Na₂SO₄, and filtered, and the solvents were removed under reduced pressure. Purification by flash chromatography (heptane/EtOAc, 20:1-14:1) afforded phenol 5 (4.87 g, 27.3 mmol, 80%) as a pale yellow oil. The spectroscopic and analytical data were in accordance with those reported in the literature: ${}^{14}R_f 0.14$ (heptane/toluene, 1:1); IR (neat) ν (cm⁻¹) 3528, 3076, 3003, 2915, 2842, 1606, 1495, 1425, 1362, 1291, 1232, 1148, 1073, 907, 831; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ (ppm) 6.561 (s, 1H), 6.555 (s, 1H), 6.00 (ddt, J = 16.8, 10.1, and 6.4 Hz, 1H), 5.50 (s, 1H), 5.11-5.01 (m, 2H), 3.86 (s, 3H), 3.37 (d, J = 6.4 Hz, 2H), 2.26 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ_C (ppm) 146.3 (Cq), 141.2 (Cq), 137.0 (CH), 128.9 (Cq), 125.6 (Cq), 122.6 (CH), 115.5 (CH₂), 109.8 (CH), 56.1 (CH₃), 34.0 (CH₂), 21.2 (CH₃); LRMS (ESI) m/z 201 [M + Na]⁺; HRMS (ESI) m/z calcd for C₁₁H₁₄O₂ [M + Na]⁺ 201.0891, found 201.0877.

[(2-Allyl-6-methoxy-4-methylphenyl)ethynyl]trimethylsilane (7). Pd(OAc)₂ (12.9 mg, 57.5 µmol, 3 mol %), RuPhos (53.7 mg, 0.115 mmol, 6 mol %), potassium (trimethylsilyl)ethynyltrifluoroborate (587 mg, 2.88 mmol, 1.5 equiv), and K_3PO_4 (1.63 g, 7.67 mmol, 4 equiv) were placed in a 25-mL flask equipped with a condenser. A solution of triflate 6 (595 mg, 1.92 mmol, 1 equiv) in THF (5.7 mL) and degassed water (570 μ L) were added, and the reaction mixture was refluxed for 4 h. Filtration on a short pad of silica gel (elution with Et2O) followed by purification by flash chromatography (heptane/toluene, 8:2-6:4) afforded alkyne 7 (440 mg, 1.70 mmol, 89%) as a yellow oil: $R_f 0.35$ (heptane/EtOAc, 10:1); IR (neat) v (cm⁻¹) 2958, 2837, 2150, 1607, 1568, 1462, 1318, 1249, 1154, 1078, 860, 840, 759; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ (ppm) 6.63 (s, 1H), 6.53 (s, 1H), 5.97 (ddd, J =17.1, 10.1, and 6.7 Hz, 1H, 5.10 (dd, J = 17.1 and 1.2 Hz, 1H), 5.04(dd, J = 10.1 and 1.2 Hz, 1H), 3.85 (s, 3H), 3.50 (d, J = 6.7 Hz, 2H), 2.31 (s, 3H), 0.26 (s, 9H); ¹³C NMR (75.5 MHz, CDCl₃) $\delta_{\rm C}$ (ppm) 160.7 (Cq), 144.6 (Cq), 139.9 (Cq), 136.7 (CH), 122.0 (CH), 115.9 (CH₂), 109.4 (CH), 109.1 (Cq), 102.4 (Cq), 100.1 (Cq),

56.0 (CH₃), 39.0 (CH₂), 22.1 (CH₃), 0.3 (3 × CH₃); LRMS (ESI) m/z 281 [M + Na]⁺, 313 [M + MeOH + Na]⁺; HRMS (ESI) m/z calcd for C₁₆H₂₂OSi [M + Na]⁺ 281.1338, found 281.1350.

[10-(tert-Butyldimethylsilyloxy)-5-methoxy-7-methyl-9,10-dihydrophenanthrene-2,3-diyl]dimethanol (15). A solution of diyne **12a** (54.9 mg, 0.167 mmol, 1 equiv) in degassed EtOH (3 mL) was added to RhCl(PPh₃)₃ (7.7 mg, 8.4 µmol, 5 mol %) and but-2-yne-1,4-diol 14b (71.9 mg, 0.836 mmol, 5 equiv). The reaction mixture was refluxed for 16 h, diluted with water (10 mL), and extracted with CH_2Cl_2 (3 × 10 mL). The combined organic phases were washed with water (10 mL), dried over Na₂SO₄, and filtered, and the solvents were removed under reduced pressure. Purification by flash chromatography (heptane/EtOAc, 1:1) afforded tricyclic diol 15 (54.0 mg, 0.130 mmol, 78%) as a colorless amorphous solid: $R_f 0.20$ (heptane/EtOAc, 1:1); IR (neat) ν (cm⁻¹) 3330, 2928, 2855, 1611, 1580, 1461, 1318, 1255, 1170, 1093, 1056, 1006, 934, 904, 868, 835, 776; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ (ppm) 8.25 (s, 1H), 7.54 (s, 1H), 6.73 (s, 1H), 6.71 (s, 1H), 4.85-4.73 (m, 5H), 3.89 (s, 3H), 2.92-2.77 (m, 4H), 2.36 (s, 3H), 0.99 (s, 9H), 0.16 (s, 3H), 0.14 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ_C (ppm) 156.9 (Cq), 141.5 (Cq), 138.7 (Cq), 137.84 (Cq), 137.75 (Cq), 137.2 (Cq), 132.1 (Cq), 129.8 (CH), 125.3 (CH), 122.2 (CH), 119.7 (Cq), 111.6 (CH), 69.6 (CH), 64.9 (CH₂), 64.8 (CH_2) , 55.7 (CH_3) , 40.0 (CH_2) , 26.1 $(3 \times CH_3)$, 21.7 (CH_3) , 18.5 $(Cq), -4.3 (CH_3), -4.7 (CH_3); LRMS (ESI) m/z 437 [M + Na]^+$ 851 $[2M + Na]^+$; HRMS (ESI) m/z calcd for $C_{24}H_{34}O_4Si$ $[M + Na]^+$ 437.2124, found 437.2115.

4-(tert-Butyldimethylsilyloxy)-5-(2-ethynyl-3-methoxy-5-methylphenyl)pent-2-ynyl 4-(tert-butyldimethylsilyloxy)hex-5-en-2ynoate (18). Di-tert-butyl diazodicarboxylate (463 mg, 2.01 mmol, 1.8 equiv) and PPh₃ (468 mg, 1.79 mmol, 1.6 equiv) were placed in a 50-mL flask at 0°C. THF (3 mL) was added, affording a yellow solution that was allowed to reach room temperature and stirred for 30 min, resulting in an off-white suspension. The reaction medium was cooled to 0°C before dropwise addition of a solution of carboxylic acid 17 (858 mg, 3.57 mmol, 3.2 equiv) in THF (4 mL);the reaction mixture became clear again. Then, 15 min later, a solution of alcohol 12c (400 mg, 1.12 mmol, 1 equiv) in THF (4 mL) was added dropwise, and the reaction mixture was stirred at 0 °C for 30 min. This mixture was then diluted with an saturated aqueous solution of NaHCO₃ (25 mL) and extracted with EtOAc (3×25 mL). The combined organic phases were washed with water (25 mL) and brine (25 mL), dried over Na₂SO₄, and filtered, and the solvents were removed under reduced pressure. Filtration through a short pad of silica gel (elution with heptane/EtOAc, 4:1) followed by purification by flash chromatography (heptane/EtOAc, 30:1 to 25:1) afforded pure ester 18 (629 mg, 1.08 mmol, 97%) as a colorless amorphous solid: R_f 0.43 (heptane/EtOAc, 4:1); IR (neat) ν (cm⁻¹) 3310, 2954, 2929, 2856, 2237, 2102, 1723, 1608, 1570, 1462, 1362, 1315, 1229, 1144, 1087, 941, 836, 778; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ (ppm) 6.71 (s, 1H,), 6.59 (s, 1H), 5.89 (ddd, J = 16.8, 10.1, and 4.9 Hz, 1H), 5.44 (d, J_{trans} = 16.8)Hz, 1H), 5.23 (d, $J_{cis} = 10.1$ Hz, 1H), 5.00 (d, J = 4.9 Hz, 1H), 4.77 (s, 2H), 4.68 (dd, J = 8.2 and 5.8 Hz, 1H), 3.88 (s, 3H), 3.49 (s, 1H), 3.14 (dd, J = 12.8 and 5.8 Hz, 1H), 3.07 (dd, J = 12.8 and 8.2 Hz, 1H), 2.33 (s, 3H), 0.92 (s, 9H), 0.82 (s, 9H), 0.16 (s, 3H), 0.14 (s, 3H), -0.02 (s, 3H), -0.10 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) $\delta_{\rm C}$ (ppm) 161.0 (Cq), 152.7 (Cq), 141.5 (Cq), 139.8 (Cq), 135.8 (CH), 124.9 (CH), 116.6 (CH₂), 109.9 (CH), 108.2 (Cq), 89.2 (Cq), 87.5 (Cq), 85.0 (CH), 78.7 (Cq), 77.5 (Cq), 76.3 (Cq), 63.6 (CH), 62.8 (CH), 56.1 (CH₃), 53.8 (CH_2) , 43.5 (CH_2) , 25.84 $(3 CH_3)$, 25.80 $(3 \times CH_3)$, 22.0 (CH_3) , 18.4 (Cq), 18.3 (Cq), -4.5 (CH₃), -4.8 (CH₃), 4.9 (CH₃), -5.2 (CH₃); LRMS (ESI) m/z 603 [M + Na]⁺; HRMS (ESI) m/zcalcd for $C_{33}H_{48}O_5Si_2 [M + Na]^+$ 603.2947, found 603.2938.

4-(tert-Butyldimethylsilyloxy)-11-(1-(tert-butyldimethylsilvloxy)allyl)-9-methoxy-7-methyl-4,5-dihydrophenanthro[1,2-c]furan-1(3H)-one (19). A solution of RhCl(PPh₃)₃ (30.7 mg, 33.1 μ mol, 5 mol %) in CH₂Cl₂ (2 mL) was added to a solution of trivne 18 (385 mg, 0.663 mmol, 1 equiv) in CH₂Cl₂ (5 mL). The reaction mixture was refluxed for 24 h and then filtered through a short pad of silica gel (elution with heptane/EtOAc, 10:1). Purification by flash chromatography (heptane/EtOAc, 30:1-25:1) afforded a mixture of both diastereoisomers of the tetracyclic lactone 19 (360 mg, 0.620 mmol, 93%) as a white solid. The two diastereoisomers were separated by preparative HPLC (Ø 16 mm; 12 mL·min⁻¹; heptane/EtOAc, 30:1) affording two samples from a 20 mg aliquot. Diastereoisomer A (9.0 mg) was obtained as a white solid and diastereoisomer B (11.4 mg) as a colorless amorphous solid. Their absolute configuration was not determined. Diastereoisomer A: R_f 0.65 (heptane/EtOAc, 10:1, 2 elutions); IR (neat) ν (cm⁻¹) 2953, 2928, 2855, 1751, 1606, 1593, 1462, 1348, 1316, 1253, 1210, 1095, 1053, 1027, 1004, 912, 853, 834, 777, 681; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ (ppm) 8.57 (s, 1H), 6.75 (s, 1H), 6.69 (s, 1H), 6.49 (d, J = 5.2 Hz, 1H), 5.93 (ddd, J = 17.1, 10.4, and 5.2 Hz, 1H), 5.66 (d, J = 15.9 Hz, 1H), 5.40 (d, $J_{trans} = 17.1$ Hz, 1H), 5.37 (d, J = 15.9 Hz, 1H), 4.98 (m, 2H), 3.89 (s, 3H), 2.89 (dd, *J* = 14.0 and 11.9 Hz, 1H), 2.82 (dd, *J* = 14.0 and 4.6 Hz, 1H), 2.37 (s, 3H), 0.97 (s, 18H), 0.20 (s, 3H), 0.17 (s, 3H), 0.14 (s, 3H), 0.10 (s, 3H); $^{13}\mathrm{C}$ NMR (75.5 MHz, CDCl₃) δ_C (ppm) 171.0 (Cq), 157.4 (Cq), 143.6 (Cq), 142.2 (Cq), 141.2 (CH), 140.2 (Cq), 138.0 (Cq), 137.3 (Cq), 133.7 (Cq), 127.0 (CH), 121.8 (CH), 119.6 (Cq), 119.2 (Cq), 113.3 (CH₂), 111.9 (CH), 70.9 (CH₂), 70.8 (CH), 69.0 (CH), 55.8 (CH₃), 40.2 (CH₂), 26.2 (3 \times CH₃), 26.1 (3 \times CH₃), 21.8 (CH₃), 18.6 (Cq), 18.3 (Cq), -3.7 (CH₃), -4.4 (CH₃), -4.5 (CH₃), -4.7 (CH₃); LRMS (ESI) m/z 603 [M + Na]⁺; HRMS (ESI) m/z calcd for $C_{33}H_{48}O_5Si_2$ [M + Na]⁺ 603.2938, found 603.2935. Diastereoisomer B: R_f 0.58 (heptane/EtOAc, 10:1, 2 elutions); IR $(neat) \nu (cm^{-1}) 2953, 2928, 2856, 1753, 1606, 1594, 1461, 1348,$ 1317, 1253, 1211, 1096, 1055, 1029, 1004, 913, 855, 835, 777, 680; ¹H NMR (500 MHz, CDCl₃) $\delta_{\rm H}$ (ppm) 8.67 (s, 1H), 6.76 (s, 1H), 6.71 (s, 1H), 6.37 (d, J = 5.2 Hz, 1H), 6.06 (ddd, J = 17.1, 10.4, and 5.2 Hz, 1H), 5.65 (d, *J* = 15.6 Hz, 1H), 5.47 (d, $J_{trans} = 17.1$ Hz, 1H), 5.38 (d, J = 15.6 Hz, 1H), 5.04 (d, $J_{cis} =$ 10.4 Hz, 1H), 4.96 (dd, J = 11.9 and 4.6 Hz, 1H), 3.89 (s, 3H), 2.95 (dd, J = 14.3 and 11.9 Hz, 1H), 2.85 (dd, J = 14.3 and 4.6 Hz, 1H), 2.38 (s, 3H), 0.96 (s, 9H), 0.92 (s, 9H), 0.18 (s, 3H), 0.14 (s, 3H), 0.10 (s, 3H), -0.02 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ_C (ppm) 171.0 (Cq), 157.4 (Cq), 143.5 (Cq), 142.3 (Cq), 141.2 (CH), 140.2 (Cq), 138.0 (Cq), 137.3 (Cq), 133.4 (Cq), 126.9 (CH), 122.0 (CH), 119.7 (Cq), 119.2 (Cq), 113.2 (CH₂), 111.9 (CH), 70.9 (CH₂), 70.5 (CH), 69.1 (CH), 55.7 (CH₃), 40.1 (CH₂), 26.2 (3 CH₃), 26.0 (3 CH₃), 21.8 (CH₃), 18.4 (Cq), 18.3 (Cq), -3.8 (CH₃), -4.4 (CH₃), -4.6 (CH₃), -4.7 (CH₃); LRMS (ESI) m/z 603 [M + Na]⁺; HRMS (ESI) m/zcalcd for $C_{33}H_{48}O_5Si_2 [M + Na]^+$ 603.2938, found 603.2927.

[6,11-Bis(*tert*-butyldimethylsilyloxy)-1,8-dimethoxy-3-methyl-5,6-dihydrotetraphen-7-yl]methanol (22). 2,6-Lutidine (103 μ L of a freshly prepared 1.0 M solution in CH₂Cl₂, 0.103 mmol, 20 mol %) was added to a solution of diene 20 (314 mg, 0.516 mmol, 1 equiv) in CH₂Cl₂ (10 mL). A solution of Grubbs II catalyst (13.2 mg, 15.5 μ mol, 3 mol %) in CH₂Cl₂ (5 mL) was added, and the reaction mixture was refluxed for 1 h. K₂CO₃ (357 mg, 2.58 mmol, 5 equiv), acetone (10 mL), and Me₂SO₄ (98 μ L, 1.03 mmol, 2 equiv) were successively added, and the reflux was maintained during 10 h. Filtration through a short pad of neutralized silica gel (elution with heptane/EtOAc, 4:1) followed by purification by flash chromatography (neutralized silica gel; heptane/EtOAc, 50:1–4:1) afforded benzylic alcohol 22 (167 mg, 0.281 mmol, 54%) as a light brown solid. Cyclic ether 23 (37.8 mg, 67.2 μ mol, 13%) was also isolated as a byproduct: R_f 0.30 (heptane/EtOAc, 4:1); IR (neat) ν (cm⁻¹) 3500, 2928, 2855, 1612, 1575, 1461, 1360, 1304, 1251, 1171, 1113, 1003, 970, 934, 834, 776; ¹H NMR (500 MHz, C_6D_6) δ_H (ppm) 9.63 (s, 1H), 6.79 (d, J = 8.5 Hz, 1H), 6.66 (s, 1H), 6.59 (s, 1H), 6.36 (d, J = 8.5 Hz, 1H)1H), 5.96 (dd, J = 3.1 and 2.4 Hz, 1H), 5.53 (dd, J = 12.1 and 4.6 Hz, 1H), 5.44 (dd, J = 12.1 and 11.0 Hz, 1H), 3.51 (s, 3H), 3.33 (dd, J = 11.0 and 4.6 Hz, 1H), 3.26 (s, 3H), 3.03 (dd, J = 15.6 and3.1 Hz, 1H), 2.87 (dd, J = 15.6 and 2.4 Hz, 1H), 2.23 (s, 3H), 1.15 (s, 9H), 0.80 (s, 9H), 0.32 (s, 3H), 0.20 (s, 3H), 0.08 (s, 3H), 0.05 (s, ¹³C NMR (75.5 MHz, C₆D₆) $\delta_{\rm C}$ (ppm) 157.7 (Cq), 151.0 3H); (Cq), 147.0 (Cq), 138.0 (Cq), 137.1 (Cq), 135.8 (Cq), 130.5 (Cq), 129.9 (Cq), 125.1 (Cq), 124.0 (CH), 123.4 (CH), 121.4 (Cq), 117.1 (Cq), 112.0 (CH), 111.8 (CH), 106.0 (CH), 65.1 (CH), 60.3 (CH₂), 55.7 (CH₃), 55.5 (CH₃), 39.3 (CH₂), 26.2 (3 × CH₃), 26.0 $(3 \times CH_3)$, 21.5 (CH₃), 18.7 (Cq), 18.3 (Cq), -3.5 (CH₃), -3.8 (CH₃), -4.2 (CH₃), -4.3 (CH₃); LRMS (ESI) m/z 445 [M – TBSOH – H₂O + H]⁺, 617 [M + Na]⁺, 649 [M+MeOH + Na]⁺; HRMS (ESI) m/z calcd for $C_{34}H_{50}O_5Si_2$ [M + Na]⁺ 617.3095, found 617.3104; mp 155-156 °C (EtOAc/heptane).

[7-Methoxy-9-methyl-11,12-dihydro-1H-tetrapheno[8,7-bc]furan-5,12-diyl)bis(oxy)]bis(tert-butyldimethylsilane) (23). 2,6-Dichlorobenzoquinone (2.4 mg, 13.4 μ mol, 10 mol %) was added to a solution of diene 20 (81.5 mg, 0.134 mmol, 1 equiv) in CH₂Cl₂ (3.5 mL). A solution of Grubbs II catalyst (5.7 mg, 6.7 μ mol, 5 mol %) in CH₂Cl₂ (3 mL) was added, and the reaction mixture was refluxed for 1 h. Filtration through a short pad of neutralized silica gel (elution with heptane/ EtOAc, 10:1) followed by purification by flash chromatography (neutralized silica gel; heptane/EtOAc, 50:1) afforded cyclic ether 23 (57.7 mg, 0.103 mmol, 77%) as a pale yellow foam: $R_f 0.57$ (heptane/EtOAc, 4:1); IR (neat) ν (cm⁻¹) 2953, 2929, 2856, 1610, 1574, 1474, 1428, 1371, 1316, 1255, 1102, 1042, 1007, 979, 912, 856, 837, 777, 702; ¹H NMR (500 MHz, C_6D_6) δ_H (ppm) 9.28 (s, 1H), 6.94 (d, J = 7.6 Hz, 1H), 6.78 (d, J = 7.6 Hz, 1H), 6.72 (s, 1H), 6.69 (s, 1H), 6.26 (d, J = 15.0 Hz, 1H), 5.96 (d, J = 15.0 Hz, 1H), 4.98 (dd, J = 11.6 and 4.0 Hz, 1H), 3.67 (s, 3H), 3.53 (dd, J = 13.7 and 11.6 Hz, 1H), 2.93 (dd, J = 13.7 and 4.0 Hz, 1H), 2.30 (s, 3H), 1.30 (s, 9H), 1.01 (s, 9H), 0.41 (s, 3H), 0.34 (s, 3H), 0.12 (s, 3H), 0.05 (s, 3H); ¹³C NMR $(75.5 \text{ MHz}, C_6 D_6) \delta_C (\text{ppm}) 157.6 (Cq), 156.9 (Cq), 143.7 (Cq),$ 138.3 (Cq), 137.4 (Cq), 133.7 (Cq), 132.7 (Cq), 131.5 (Cq), 130.0 (Cq), 125.9 (Cq), 122.3 (CH), 122.0 (Cq), 121.0 (CH), 116.1 (CH), 112.2 (CH), 100.0 (CH), 79.0 (CH₂), 71.3 (CH), 55.4 (CH₃), 41.2 (CH₂), 26.24 (3 × CH₃), 26.19 (3 × CH₃), 21.5 (CH₃), 18.7 (Cq), 18.3 (Cq), -4.0 (CH₃), -4.1 (CH₃), -4.3 (CH_3) , -4.7 (CH_3) ; LRMS $(ESI) m/z 585 [M + Na]^+$; HRMS (ESI) m/z calcd for C₃₃H₄₆O₄Si₂ [M + Na]⁺ 585.2832, found 585.2847

6,11-Bis(tert-butyldimethylsilyloxy)-7-isocyanato-1,8-dimethoxy-3-methyl-5,6-dihydrotetraphene (34). Et₃N (15 µL, 0.104 mmol, 3 equiv) and (PhO)₂PON₃ (16 µL, 69.2 µmol, 2 equiv) were successively added to a solution of carboxylic acid 31 (24.8 mg, 34.6 μ mol, 1 equiv) in CH₂Cl₂ (700 μ L), and the reaction mixture was stirred at room temperature for 1 h. Filtration on neutralized silica (elution with CH_2Cl_2) and evaporation of the solvent at room temperature, followed by purification by flash chromatography (neutralized silica; Pent/Et₂O, 20:1-10:1) afforded isocyanate 34 (4.0 mg, 6.6 μ mol, 19%) as a colorless amorphous solid. Lactone 33 was also isolated from the reaction mixture: $R_f 0.54$ (heptane/EtOAc, 4:1); IR (neat) ν (cm⁻¹) 2928, 2855, 2284 (N=C=O), 1611, 1593, 1461, 1333, 1316, 1288, 1259, 1104, 1070, 970, 933, 901, 835, 777; ¹H NMR (500 MHz, C₆D₆) $\delta_{\rm H}$ (ppm) 9.46 (s, 1H), 6.72 (d, J = 8.2 Hz, 1H), 6.70 (s, 1H), 6.55 (s, 1H), 6.29 (d, J = 8.2 Hz, 1H), 5.67 (dd, J = 2.7 and 2.1 Hz, 1H), 3.54 (s, 3H), 3.49 (s, 3H), 2.96 (dd, J = 15.3 and 2.7 Hz, 1H), 2.74 (dd, J = 15.3 and 2.1 Hz, 1H), 2.20 (s, 3H), 1.13 (s, 9H),0.79 (s, 9H), 0.29 (s, 3H), 0.19 (s, 3H), 0.18 (s, 3H), 0.02 (s, 3H); ¹³C NMR (125.8 MHz, C₆D₆) δ_C (ppm) 157.7 (Cq), 150.8 (Cq),

JOC Article

146.1 (Cq), 138.5 (Cq), 137.3 (Cq), 132.8 (Cq), 130.8 (Cq), 130.4 (Cq), 125.8 (Cq), 125.2 (Cq), 123.3 (CH), 121.6 (CH), 120.2 (Cq), 113.0 (CH), 111.6 (CH), 105.4 (CH), 64.6 (CH), 55.5 (CH₃), 55.1 (CH₃), 39.3 (CH₂), 26.1 ($3 \times$ CH₃), 25.9 ($3 \times$ CH₃), 21.6 (CH₃), 18.6 (Cq), 18.4 (Cq), -3.9 (CH₃), -4.2 ($2 \times$ CH₃), -4.5 (CH₃); one carbon signal was not visualized (probably hidden by the solvent signal); LRMS (ESI) *m*/*z* 628 [M + Na]⁺; HRMS (ESI) *m*/*z* calcd for C₃₄H₄₇NO₅Si₂ [M + Na]⁺ 628.2891, found 628.2895. Acknowledgment. This work has been financially supported by the Institut de Chimie des Substances Naturelles (ICSN) and the Centre National pour la Recherche Scientifique (CNRS).

Supporting Information Available: Experimental procedures and characterization data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.